
CI / CD Pipeline

Let’s define a CI/CD Pipeline

CI/CD
In this context CI/CD only covers: Continuous Integration / Continuous Delivery

Not Continuous Deployment - as this requires a very strong ability to get Continuous Delivery right first,

and the ability to rollback or roll forward, whatever the case might be.

Continuous Integration: is a practice which the code is continually integrated and each commit is verified

by an automated build, allowing problems detection early.

Continuous Delivery: is a practice of delivering every change to a production-like environment and

assurances are provided through rigorous automated testing

Define the Principle of CI/CD first

What is a principle?

With Google’s help

Principle of CI/CD

Following Agile thinking, a CI/CD pipeline is made up of:

0. People

1. Practices

2. Tools

3. Processes

Principle of CI/CD

The previous list shape the following CI/CD Principle

People and Practices over Tools and Processes

This doesn’t mean that Tools and Processes are not or less important.

This means that People and Practices will put the foundation, thinking and selection of these Tools and

Processes.

CI/CD

CI/CD
On top of the Practices, the team would want to have a team agreement. For example:
- to not have snowflake pipelines
- to have and define test coverage baseline
- to strive for a x-functional team
- when fixing a bug - write unit test first!
- to create and maintain living documents

CI/CD
While teams now have:

0. The principles of Continuous Integration and Continuous Delivery

1. Team Agreements

Teams will still need to:

● Define
● Build and
● Maintain

their own CI/CD pipeline as each team will have different requirements and set up.

For example, a JavaScript team will have different set up to a Java or Java and JavaScript team.

CI/CD
Organisational governance, and architecture, are still providing direction and guidance.

Organisation and Architecture Governance

Principles

Practices

Implementation

